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Abstract

Field programmable gate arrays (FPGAs) have long
been an attractive alternative to microprocessors for com-
puting tasks — as long as floating-point arithmetic is not
required. Fueled by the advance of Moore’s Law, FPGAs
are rapidly reaching sufficient densities to enhance peak
floating-point performance as well. The question, however,
is how much of this peak performance can be sustained.
This paper examines three of the basic linear algebra sub-
routine (BLAS) functions: vector dot product, matrix-vector
multiply, and matrix multiply. A comparison of micropro-
cessors, FPGAs, and Reconfigurable Computing platforms
is performed for each operation. The analysis highlights the
amount of memory bandwidth and internal storage needed
to sustain peak performance with FPGAs. This analysis
considers the historical context of the last six years and is
extrapolated for the next six years.

KEYWORDS: IEEE floating point, arithmetic, FPGA, re-
configurable computing

1. Introduction

The current trends in FPGA performance produced by
the advances in semiconductor technology according to
Moore’s Law will yield FPGA devices with a factor of three
to eight more peak floating-point performance than compa-
rable microprocessors by 2009[21]. Yet, a significant factor
in the ability of FPGAs to achieve this advantage is the fact
that CPU designers choose not to dedicate silicon area to
floating-point units (FPUs) that would go unutilized. Even
with careful hand optimization of dense matrix operations,
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most microprocessors achieve less than 90% of peak per-
formance. These are the “best case” scenarios with many
real applications achieving less than 50% of peak and some
as low as 5% of peak. In light of this, the question is: will
FPGAs be able to leverage their higher peak performance to
produce higher sustained floating-point performance?

Traditionally, FPGAs have been shown to sustain much
greater performance than microprocessors for a number of
integer and fixed-point applications — particularly digital
signal processing (DSP) applications. This hails from the
ability of FPGAs to sustain a high fraction of peak perfor-
mance rather than the sheer magnitude of their peak per-
formance. Widely recognized FPGA friendly applications
lend themselves to dataflow implementations and require
relatively little medium term (longer than the depth of the
dataflow pipeline) storage. Unfortunately, scientific appli-
cations that use double precision floating-point generally
do not have the same characteristics as DSP applications.
For example, scientific applications tend to have long inner
loops, require a large average number of bytes from mem-
ory for each operation, exhibit poor caching behavior, and
perform irregular, indirect addressing.

This paper presents a study of FPGA performance on
double precision, floating-point, dense matrix operations.
The three operations considered are vector dot product
(DDOT), matrix-vector multiply (DGEMV), and matrix mul-
tiply (DGEMM). Each operation is evaluated to determine
the sustainable performance over a range of FPGA devices
and the Reconfigurable Computing (RC) platforms that use
them. Both DDOT and DGEMV are traditionally memory
limited and so this paper considers both what can be imple-
mented (RC platforms) as well as the theoretical maximum
(assuming all pins are dedicated to memory). For DGEMM,
caching can alleviate memory bandwidth constraints; thus,
a parameter study is performed to consider the trade-off
between internal storage and memory bandwidth require-
ments to sustain peak performance. Historical, current, and
projected FPGA floating-point performance are covered. A



prototype implementation on an Osiris reconfigurable com-
puting card with a Xilinx Virtex II 6000 FPGA is used as a
reference point for validation.

As part of this study, this paper uses sustainable perfor-
mance on BLAS operations as a metric to compare perfor-
mance trends between FPGAs and microprocessors. The
results show that FPGAs can sustain a much higher percent-
age of peak than microprocessors for memory bound dense
matrix operations by supporting higher memory bandwidth.
In addition, for non-memory bound dense matrix opera-
tions, FPGAs are now competitive with microprocessors
and are poised to overtake them. In the remainder of the
paper, related work and platforms evaluated are presented
(Sections2 and3), each of the three dense matrix operations
are analyzed (Sections4, 5, and6), and conclusions and fu-
ture work are presented (Sections7 and8 respectively).

2. Related Work

There has been extensive research into floating-point
arithmetic on FPGAs. Several efforts[19, 3, 5, 8, 13] have
investigated the use of custom floating-point formats in
FPGAs. Others have studied translating floating-point to
fixed point[12] or automatically optimizing the bit widths
of floating-point formats[9] as an alternative. Compared to
IEEE standards[11], these formats require significantly less
area and run significantly faster. Customized formats enable
significant speedups for certain applications, but many sci-
entific applications depend on the dynamic range and high
precision of IEEE double-precision floating-point to main-
tain numerical stability. Thus, this work focuses on the
IEEE standard. Indeed, some application developers within
the DOE labs are beginning to discuss the need for greater
precision than the standard IEEE formats, and such formats
may be an aspect of future work.

Early work on IEEE floating-point[7] found that sin-
gle precision implementations were feasible, but extremely
slow. Performance significantly improved[15], but was still
uncompetitive. Eventually, FPGAs achieved competitive,
sustained, IEEE standard floating-point performance[14].
Since then, a variety of work[16, 3, 13, 22] has demon-
strated the growing feasibility of IEEE compliant, single
precision floating-point arithmetic and other similarly com-
plex floating-point formats. Indeed, some work[20] sug-
gests that a collection of FPGAs can provide dramatically
higher performance than a commodity processor.

A number of works have focused on optimizing the for-
mat and the operators to maximize FPGA performance. In
[16] a delayed addition technique is used to achieve impres-
sive clock rates. In other work, [3, 13], the details of the
floating-point format are varied to optimize performance.
The specific issues of implementing floating-point division
in FPGAs has been studied[22] as well as mechanisms to

leverage new FPGA features to improve general floating-
point performance[17], but neither cover double precision.
Indeed, only [10] and [21] have covered the performance of
IEEE double precision floating-point.

Only a few researchers have studied matrix operations on
FPGAs. Specifically, [14] studies several aspects of single
precision floating-point matrix multiplication and compares
it to a microprocessor. More recently, [10] considers both
performance and power issues for double precision floating-
point matrix multiplication. To our knowledge, no other
work has studied other dense matrix operations (such as
DDOTor DGEMV), trends in sustained FPGA performance,
or the memory bandwidth and internal storage that will be
needed to maintain those trends.

3. Platforms and Devices

Five FPGAs, three RC platforms, and three micropro-
cessors are evaluated here. These devices and systems were
selected to represent the “best available” over the course of
several years to enable the extrapolation of trend lines. The
devices, platforms, and CPUs are shown in Table1. The
choice of FPGAs and CPUs is explained in [21]. The plat-
forms are chosen to provide real design points that are rep-
resentative of boards that could be built with the FPGAs
available so that system level trends could be considered.1

In particular, the FPGA chosen for 1997 was not available
on the representative platform chosen for 1997, but it is the
FPGA that is most representative of FPGAs of the time that
could still be placed and routed with the tools available to
the authors. A second important point about the 1997 data
points in this paper is that they fall well below the FPGA
trend lines. This is because one double precision floating-
point multiply accumulate is1.17× the size of one device.
Splitting the multiply accumulate over two devices under-
utilizes the space and yields an artificially low number.

The Annapolis Microsystems WildForce board[2] con-
sists of four Xilinx 4000 series compute FPGAs connected
with nearest neighbor links and connected through a global
crossbar. Each FPGA has access to a dedicated, four byte
wide, 40 MHz SRAM memory. The SLAAC-1V[18] is a
research board designed by USC ISI-East with two Xilinx
Virtex 1000 compute FPGAs. Each FPGA has four banks
of four byte wide, 65 MHZ SRAM memory. The Osiris
board[4] is a research board designed by USC ISI-East. It
has one Xilinx Virtex-2 FPGA with 10 banks of four byte
wide 200 MHz SRAM and one 8 byte wide bank of 133
MHz SDRAM.

The Pentium-II processor is interfaced to PC-66 memory
(66 MHz SDRAM). Data for this processor was either es-
timated (based on the relative memory performance to the

1The set may not be ideal, but it was chosen based on author experience
and should be adequate for the purpose.
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Year Device Platform CPU
1997 Xilinx XC4085XLA-09 Annapolis Microsystems WildForce Pentium-II 266 MHz
1999 Virtex 1000-5 SLAAC-1V
2000 Virtex-E 3200-7 Athlon 1.0 GHz
2001 Virtex-II 6000-5 Osiris
2003 Virtex-II Pro 100-6 Pentium-4 3.06 GHz

Table 1. FPGAs, Reconfigurable Computing platforms and CPUs analyzed

Athlon for the vector dot product and matrix-vector multi-
ply) or taken from the web[23] (for matrix multiplication).
The 1 GHz Athlon performance was measured using the
ATLAS 3.4.1 implementation of the BLAS libraries on a
system with PC-133 (133 MHz SDRAM) running Linux
2.2 (on a cluster computing optimized distribution from
Scyld corporation). The Pentium-4 measurements used a
533 MHz front side bus and dual channel PC2100 (266
MHz DDR-SDRAM) memory. It was measured with AT-
LAS 3.4.1 under the RedHat 9 operating system. Neither
the Athlon nor the Pentium-4 used represent the absolute
fastest version of these processors during the years they rep-
resent, but they are within a very small constant factor of it.

Since memory bandwidth is a critical factor in system
performance, memory bandwidth trends are graphed in Fig-
ure 1. Three sets of data are shown. The first is the trend
in CPU memory bandwidth extrapolated out to 2009. The
second is the trend in RC platform bandwidth extrapolated
out to 2009, which considers actual configurations of FPGA
based systems that are being built. Admittedly, these plat-
forms are quite expensive. The final set of data extrapo-
lates the maximum achievable memory bandwidth of a sin-
gle FPGA. For a single FPGA, it is assumed that the fastest
memories available at the time are connected to all of the
pins of the device with a 30% control overhead for the pe-
riod from 1997 to 2000 assuming SRAM devices are used
and a 40% control overhead after that (assuming SDRAM
devices are used). These estimates attempt to be as conser-
vative as reasonable, however, the projection of maximum
achievable memory bandwidth for an FPGA clearly over-
shoots what was achievable in 2003. These projections may
be optimistic given the concern throughout the computing
industry that memory performance is not tracking processor
performance. However, the projections are well within the
pin counts and pin bandwidths projected by the ITRS[1].

4. Vector Dot Product

The standard vector dot product (theDDOTBLAS rou-
tine) is the sum of the pairwise products of two vectors, or:
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Figure 1. Memory bandwidth of the platforms
and devices analyzed

p =
N−1∑
i=0

xiyi (1)

which requires2N memory accesses to perform2N
floating-point operations. Thus, for each data item, one
floating-point operation is performed. In modern proces-
sors,DDOTis memory bound. That is, although the pro-
cessor floating-point unit can perform several gigaflops per
second, the memory cannot provide data to support it. The
maximum sustainable floating-point rate is:

FLOPs =
BW

8
(2)

whereBW is the memory bandwidth in bytes per second
and 8 bytes are required to store a floating-point number.
This is graphed in Figure2 on a log-log graph.

4.1. FPGA Implementation

Implementing vector dot product on an FPGA carries
unique challenges. Like many BLAS routines,DDOTis
based on multiply accumulate (MACC) operations. On mi-
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croprocessors, a dot product uses multiple concurrent multi-
ply accumulates to hide the pipeline latency of the floating-
point unit. The results from the partial accumulations are
summed at the end of the operation. The final summation
causes multiple pipeline stalls; however, multi-gigahertz
clock rates produce small actual time penalties.

Three challenges face implementors ofDDOTon FPGAs:

• the adder pipeline is deeper,

• multiple MACC units are required to fully utilize high
bandwidth memory, and

• the clock rate is lower.

These factors require additional control logic inside and out-
side of the multiply-add and MACC units to efficiently use
FPGA resources. First, a multiplier bypass multiplexor (la-
beled MB) is required in the multiply-add (Figure3(b)) to
reuse the adder for portions of the final summation. Sec-
ond, the MACC must perform 13 concurrent operations to
hide the adder latency. This requires a second feedback path
(with associated control) through the FP multiplexor in the
MACC (Figure3(c)) to sum the 13 results. The added logic
is shown with dashed lines in Figure3.

Unfortunately, the long pipeline and low clock rate of
floating-point operations in FPGAs cause a performance
penalty for smaller vectors. This is generally not a problem
since memory latency is a dominant factor for small vector
performance. Longer vectors will hide the penalty.

4.2. Performance Comparisons

The performance ofDDOTon an FPGA is based on the
memory bandwidth, but can also be limited by the floating-
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Figure 4. A comparison of double precision
floating-point dot product performance on CPUs,
FPGAs, and RC platforms

point performance of the FPGA. Figure4 compares the per-
formance of commodity CPUs with that of FPGA platforms
and the peak performance possible with a single FPGA that
dedicates all pins to memory. CPU performance was mea-
sured for the 2000 and 2003 data points with vectors of 1000
elements2 and estimated for the 1997 data point based on
the memory bandwidth and architecture.3 Note that each of
the CPU data points correspond very closely to the memory
bandwidth of the processor over 8. When extrapolated, this
trend line grows at a rate of2.8× every 3 years.

PeakDDOTperformance is estimated for each FPGA
based on the maximum multiply accumulate performance
for the FPGA (from [21]). This assumes that all of the
FPGA’s pins are dedicated to high speed memory (see Fig-
ure 1) and assumes that 90% of the floating-point perfor-
mance can be achieved if adequate memory bandwidth is
available. This assumption requires vectors of 7500 ele-
ments or more because of the overhead of the final summa-
tion through the parallel units. The line for 50% of achiev-
able performance is also plotted and only requires vectors of
1000 elements. This trend extrapolates to4.5× every two
years (see [21]) because the pin bandwidth of the FPGA
never becomes the limiting factor.

The other pair of lines presents dot product performance
on reconfigurable computing platforms. These platforms
often use multiple FPGAs and provide a “realistic” de-
sign point with a “realistic” memory bandwidth.4 Most of
these points are estimated, but an implementation has been

2Performance was constant across a wide range of vector lengths.
3This is a best case estimate assuming the older processor sustained as

much of the peak memory bandwidth as newer processors.
4Realistic in that people buy it, but not realistic in a cost comparison

with traditional processors.
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tested on the Osiris board for validation. It is assumed that
90% efficiency can be achieved with the memory accesses,
since these platforms use predominantly SRAM. This curve
grows at a much slower pace (3.5× every two years) than
FPGA performance because it starts at a point using multi-
ple FPGAs and slowly reduces the total number of FPGAs
per board. For each platform, the limitation is the amount of
memory bandwidth provided; however, the memory band-
width is much higher than the competitive CPU giving the
RC platform a significant edge in total performance.

5. Matrix-Vector Multiply

TheDGEMVBLAS routine is defined as:

wi =
N−1∑
j=0

Aijyj + zj (3)

The lower bound on memory accesses isN2 + 3N5 and
performs2N2 floating-point operations. Achieving that re-
quires that the vector be cached in the processor. In the
limit, two floating-point operations are performed for each
element retrieved from memory.DGEMVis also a memory
limited operation on microprocessors. The maximum sus-
tainable floating-point rate is:

FLOPs =
2×BW

8
(4)

whereBW is the memory bandwidth in bytes per second
and 8 bytes are required to store a floating-point number.
This is graphed in Figure2 on a log-log graph.

5It must retrieve a matrix and two vectors and store one vector.
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Figure 5. Matrix vector multiplication implemen-
tation

5.1. FPGA Implementation

Matrix-vector multiplication has much more inherent
parallelism than vector dot product. When the matrix di-
mension is greater than the depth of the addition pipeline, it
is possible to use all of the floating-point capabilities of the
FPGA without making special adaptations to the multiply
accumulate unit. Instead, the standard MACC of Figure3(a)
is used with additional storage and control outside of it as
shown in Figure5.

The design in Figure5 assumes that the matrix,A, is
stored in one logical memory with a bandwidth that will
support some number of MACC units,m. Thus, the vectors
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y andz are loaded and broadcast to all of the MACC units
while the matrix is fetched from memory and distributed
to the MACC units. Before broadcasting to the MACC
units, each element ofy is replicatedk times (wherek is
the pipeline depth of the adder). Effectively, there arek
rows of the matrix being multiplied with the vector in each
MACC unit. The vectorz is used to initialize the summa-
tion unit. Thus, one MACC unit is fed thejth element ofk
rows to matchk copies of thejth element ofy. The matrix
data can be fetched directly in this order from SRAM mem-
ories or can be fetched in larger pieces from SDRAM with
re-ordering performed in the matrix fetch unit. Note that,
once loaded,y is reused (through the feedback path)Nk×m
times. This design does not apply the scalar multiples toy
andz that are indicated in the standard, but such a change
would be relatively simple.

The limitation of this approach is the need to store a vec-
tor for large values ofN . The alternative is to divide the
vector into parts of lengthL and perform the equivalent of
N
L smaller matrix-vector multiplies. The first would add the
vectorz to the result (as in Equation3) and subsequent por-
tions of the operation would add the intermediate result in
place ofz. This would increase the number of memory ac-
cesses toN2 + 3N2

L . For FPGAs from 1999 and forward,
anL value of 2000 is achievable. Thus, theN2 term for the
matrix access still dominates. This issue would only serve
to decrease performance estimates for earlier FPGAs (thus
skewing the trend line) and will not be considered further.

5.2. Performance Comparisons

Like vector dot product, matrix-vector multiplication is
typically a memory bound operation; however, devices that
provide enough memory bandwidth shift the limitation to
the floating-point performance of the device. The perfor-
mance of recent RC platforms is compared with recent com-
modity CPUs and the peak performance possible with a sin-
gle FPGA in Figure6. CPU performance was measured for
the 2000 and 2003 data points with anN of 10006 and es-
timated for the 1997 data point based on the differences in
memory bandwidth and architecture.7 In all cases except
the 2003 data point, this corresponds very closely to twice
the dot product performance. It is unclear why the Pentium-
4 failed to achieve a similar improvement, but this reduces
the performance growth rate to just over2.3× every 3 years.

Like DDOT, peakDGEMVfor the FPGAs is based on the
maximum multiply accumulate performance of the FPGA.
This is because the use of all of the FPGA pins for mem-
ory provides abundant bandwidth to achieve the peak per-
formance. UnlikeDDOT, DGEMVhas sufficient independent

6Performance was constant across a wide range of values forN .
7This is a best case estimate assuming the older processor could sustain

as much of the peak memory bandwidth as the newer processors.
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Figure 6. A comparison of double precision
floating-point matrix-vector multiplication perfor-
mance on CPUs, FPGAs, and RC platforms

parallelism to enable the FPGA to achieve its full peak per-
formance on smaller matrix and vector sizes. Extrapolating
this trend yields the same4.5× growth every two years as
the dot product since the FPGA pin bandwidth never be-
comes the limiting factor.

Recent reconfigurable computing platforms are also in-
cluded in this comparison. Most points are estimated, but
an implementation on the Osiris board to validate the es-
timates has been simulated. Using the same assumptions
used for the vector dot product yields a performance growth
rate of3.25× every two years. This is lower than the FPGA
growth rate because the number of FPGAs on RC platforms
has been steadily decreasing. This growth rate may accel-
erate over the coming years (since less than one chip per
board is unlikely). Nonetheless, since 1999, RC platforms
have had both higher performance than commodity CPUs
and a higher rate of growth. As a note, the performance for
the 1997 RC platform data point is particularly low because
the XC4000 series parts did not have sufficient internal stor-
age to store a vector of any significant length. This limits
the performance of that platform to slightly higher than the
dot product performance. The slight improvement over dot
product performance is achieved by having a higher inher-
ent degree of parallelism that prevents the loss in efficiency
seen with the dot product. This would give the trend line
an artificially low starting point and artificially steep slope8,
but the trend is established based on the performance the
1997 part would achieve if it had internal storage.

The final point for discussion is the amount of storage
needed to achieve this performance. As noted, the XC4000
series had insufficient internal storage to achieve the full
potential of the 1997 RC platform. The Virtex 1000 part,

8Although the embedded memories in newer FPGAs could be consid-
ered an architectural improvement (making this valid), similar improve-
ments for matrix-vector multiplication are unlikely to occur.
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however, has enough storage for 1000 vector elements. The
Virtex-2 6000 has enough storage for 10000 vector elements
and the Virtex-2Pro series has even more storage. As long
as the total storage in an FPGA is not decreased (an un-
likely scenario), FPGAs already have abundant storage for
matrix-vector multiplication.

6. Matrix Multiply

The standard matrix multiply (thedgemmBLAS routine)
is defined as:

Cij =
N−1∑
k=0

AikBkj + Cij (5)

In the best case, this requires4N2 memory accesses9 and
performs2N3 floating-point operations. This yieldsN2
floating-point operations for each element retrieved from
memory. Achieving the best case, however, imposes the
unrealistic requirement that two matrices be cached in the
processor. Fortunately, proper use of caching in modern
processors allows them to sustain a high percentage of peak
with relatively low memory bandwidth. If each matrix only
had to be retrieved from memory once, the maximum sus-
tainable floating-point rate would be:

FLOPs =
N
2 ×BW

8
(6)

whereBW is the memory bandwidth in bytes per second,
N is the dimension of the matrix, and 8 bytes are required
to store a floating-point number. This is graphed in Figure7
on a log-log graph.

Typically, however, the processor cannot store all of the
matrices involved. Instead, some form of blocking is used
to divide the matrix into smaller pieces[24]. These smaller
pieces are loaded into the processor, the computations are
performed on them, and the partial results stored. For ex-
ample, for a64 × 64 matrix multiply, each matrix might be
broken into 64 regions that are8× 8. A row of these blocks
would then be multiplied by a column of these blocks to
create an8×8 block of the result. In the process, the partial
result (an8 × 8 block) would be updated 8 times (although
typically in local storage or cache). The ultimate result is
that the matrices are fetched several times more than would
otherwise be necessary. For blocks of dimensionS, this
yields a factor ofNS increase in accesses to theA andB ma-

trices, leading to2N2 + 2N3

S memory accesses. For large
matrices, this approaches a floating-point rate of:

FLOPs =
S ×BW

8
(7)

9This assumes square matrices and includes retrieving three matrices
and storing one matrix.
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6.1. FPGA Implementation

One way to view matrix multiplication is as a collection
of N matrix-vector multiplications. As such, it exhibits sig-
nificantly more parallelism. Unfortunately, it is impractical
to store all of a matrix in most modern devices (with the pos-
sible exception of the Itanium chips with the largest caches)
for reasonable matrix sizes. Thus, the implementation cho-
sen (shown in Figure8) resembles a collection of matrix-
vector multiplications, but blocks the matrix to reduce total
storage requirements.

To perform the matrix multiplication, aS × S
m section

of a block of the matrixB in column major order is loaded
into each ofm MACC units. Simultaneously, the matching
block of the matrixC is also loaded into the MACC unit
in column major order. This requires a total of6S2 ele-
ments of storage at 8 bytes per element. The corresponding
block of A is loaded into a FIFO that is used to broadcast
it to all MACC units S

m times (also in column major order).
Each MACC unit createsS replicas of each element ofB to
match the number of rows ofA that will be multiplied with
it. This provides the concurrency needed to hide all of the
latency of the adder. As each element ofB andC is used,
it is discarded. When the MACC unit finishes, it produces
an intermediate version of the resultC. This intermediate is
fed back to the input to be added to the multiplication of the
next pair of blocks fromA andB. When the final version of
a block ofC is produced, it is stored. Overall, this requires
no more than6S2 elements of storage at 8 bytes per ele-
ment. This includes 2 copies of each matrix block — one to
operate on and one to change it from row major to column
major order.
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6.2. Performance Comparisons

Unlike vector dot product and matrix-vector multipli-
cation, matrix multiply is not typically memory bound.
With relatively little caching, modern microprocessors can
achieve a high percentage of peak performance with com-
modity memory attached. As seen in Figure9, this enables
microprocessors to maintain an edge over FPGAs and RC
platforms up through 2003. For this graph, data points for
the CPUs in 2000 and 2003 were measured and the data
point for the CPU in 1997 was taken from [23]. The ex-
trapolated trend line projects a4.5× growth in performance
every 3 years.

FPGA performance on matrix multiply has been equiv-
alent to matrix-vector multiply because FPGAs can pro-
vide sufficient bandwidth to maintain peak performance on
matrix-vector multiply. As such, the rate of growth (4.5×
every two years) is also the same as for matrix-vector mul-
tiply and, indeed, the same as for the multiply-add perfor-
mance projected in [21].

Reconfigurable computing platforms also demonstrate
the same characteristics (peak performance and perfor-
mance growth) as matrix-vector multiply. Again, all but
one of these points are currently estimated, but an imple-
mentation has validated one data point on an Osiris board.
As with matrix-vector multiply and dot product, the growth
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Figure 9. A comparison of double precision
floating-point matrix-vector multiplication perfor-
mance on CPUs, FPGAs, and RC platforms

rate has been lower than what might be expected in the fu-
ture since the number of devices per board is unlikely to
keep shrinking; however, even the current trends indicate
that RC platforms will outperform microprocessors in the
near future.

6.3. Memory Requirements

The key feature that distinguishes matrix multiplication
from matrix-vector multiplication is that it requires much
less memory bandwidth to maintain peak performance. This
is an important factor since supercomputing applications of
FPGAs are unlikely to provide the level of memory band-
width that many RC platforms provide (due to the addi-
tional cost and negative reliability implications of several
extra banks of memory). As such, it is important to examine
the storage needs of FPGAs relative to their peak bandwidth
and peak performance.

Figure 10(a) illustrates the high levels of performance
achievable with relatively little memory bandwidth and suf-
ficient internal storage. For example, the 4 GFLOP/s of
peak floating-point capability available in 2003 can be sus-
tained with only 512 MB/s of memory bandwidth and only
192 KB of internal storage in the FPGA. This easily falls
within the limits of even the Virtex-II family. The important
observation here is that internal memory can be traded for
external memory bandwidth.

The flip side of this analysis is to consider the amount of
internal memory needed for various memory bandwidth and
block size combinations. Figure10(b) compares the size of
the internal cache needed to the amount of memory band-
width needed and the block size. By 2009, FPGA platforms

8



Insufficient to Sustain FPGA Peak in 2003
Insufficient to Sustain FPGA Peak in 2005
Insufficient to Sustain FPGA Peak in 2007
Insufficient to Sustain FPGA Peak in 2009

Sufficient to Sustain FPGA Peak in 2009

10
100

1000
10000Memory Bandwidth (MB/s) 0

200
400

600
800

1000

Block Size (Elements)

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06

Performance (MFLOP/s)

Insufficient to Sustain FPGA Peak in 2003
Insufficient to Sustain FPGA Peak in 2005
Insufficient to Sustain FPGA Peak in 2007
Insufficient to Sustain FPGA Peak in 2009

Sufficient to Sustain FPGA Peak in 2009

10
100

1000
10000Memory Bandwidth (MB/s) 0

200
400

600
800

1000

Block Size (Elements)

0
10
20
30
40
50
60
70
80
90

Cache Required (MB)

(a) (b)

Figure 10. (a) Maximum achievable performance versus memory bandwidth and block size; (b) Memory
needed in an FPGA to maintain peak performance versus memory bandwidth and block size

CPU FPGA RC Platform

ddot Memory FLOPS Memory
dgemv Memory FLOPS FLOPS
dgemm FLOPS FLOPS FLOPS

Table 2. Performance constraint

will need to provide several gigabytes per second of mem-
ory bandwidth or several megabytes of internal storage. For
this algorithm, however, both the memory bandwidth and
internal storage needed to maintain peak performance ap-
pear to be easily achievable.

An interesting revelation from this analysis is the signif-
icant gains in efficiency that FPGAs achieve. These gains
appear to arise from the ability to explicitly manage internal
storage and the high aggregate internal memory bandwidth.
Commodity processors typically achieve only 80-90% of
their peak performance on dense matrix multiplies while re-
quiring hundreds of kilobytes of cache and gigabytes per
second of memory bandwidth. By contrast, the FPGA only
requires 192 KB of storage and 512 MB/s of external mem-
ory bandwidth. If this trend holds for other algorithms, it
will be a significant advantage for FPGAs in the realm of
high performance computing.

7. Conclusions

In summary, FPGAs and Reconfigurable Computing
platforms are able to significantly outperform modern mi-
croprocessors on memory bandwidth sensitive double pre-

cision floating-point operations, including vector dot prod-
uct and matrix-vector multiplication (theddot anddgemv
BLAS operations). Indeed, unlike CPUs, FPGAs are of-
ten limited by peak FLOPs rather than by memory band-
width (see Table2). The trends indicate that this has been
the case for several years and that the performance gap will
widen. For matrix multiplication (thedgemmBLAS opera-
tion), commodity processors still hold a slight edge thanks
to their significantly higher peak performance; however,
FPGAs can achieve a higher percentage of peak with less
memory bandwidth and less internal storage. When com-
bined with trends that indicate that the peak double preci-
sion floating-point performance of FPGAs will soon out-
strip commodity CPUs, this offers great promise for the fu-
ture of FPGAs in scientific computing. This is an initial im-
plication that FPGAs will not hit the memory wall as soon
as commodity processors giving them an edge in the future
of high performance computing.

8. Future Work

The BLAS routines are widely used by high performance
computing applications. Indeed, they are at the core of
the popular LINPACK benchmark[6]. Thus, they provide
a good initial metric for comparing the sustained floating-
point capabilities of FPGAs and CPUs; however, these
dense matrix operations are not characteristic of the sci-
entific computing workload within the Department of En-
ergy (DOE) Advanced Simulation and Computing (ASCI)
program. In the future, we will be considering multi-
dimensional fast Fourier transforms (FFTs) and sparse ma-
trix solvers. We will also be analyzing how future super-
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computers might leverage the capabilities of FPGAs.
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